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1 Introduction

An s x t binary array is a two-dimensional array (a;;) for which

lor —1 forall0<i<s,0<5<t
a5 =

0 otherwise.

Define the aperiodic autocorrelation function of a binary array (a;;) by

C’(u, ’U) = Z Z Qi Qid-u,j+v s
i g

where u, v are integers. In this paper, summations will be over all integers unless otherwise stated.
We shall write C4(u,v) to distinguish the aperiodic autocorrelation function of A from that of

any other binary array. A binary array is called Barker if |C(u,v)| < 1 for all (u,v) # (0,0).

1 1
The array is Barker, but no Barker array with s,¢ > 1 and (s,t) # (2,2) is known.

1 -1

Alquaddoomi and Scholtz [1] conjectured that no such array exists, and proved the necessary
conditions that neither s nor ¢ is an odd prime, that st is a square when s or ¢ is even, and that
2st — 1 is a square when st =1 (mod 4). Jedwab [6] proved that if s,¢ are even then s = t¢.

In this paper we define a property of binary arrays which we call Barker structure, which any
s x t Barker array with st > 2 possesses. For an s X ¢t binary array with Barker structure, we prove
restrictions on the possible values of (s, t), as well as the array elements (a;;), in the cases s, ¢ even
and s even, t odd. We also show that any such array is simultaneously perfect and quasiperfect,
and that its existence implies the existence of larger arrays with restrictive autocorrelation prop-
erties. (For background material on perfect, quasiperfect and doubly quasiperfect arrays, we refer
the reader to Jedwab et al. [9].)

In a further paper [8] we prove nonexistence results for binary arrays with Barker structure

when s, t are odd.



2 Barker structure

Define the rowwise and columnwise semi-periodic autocorrelation function of an s x t binary array

by
PRu,v) = C(u,v)+ Cu,v—t), definedon —s <u<s,0<v<t, (1)

P%u,v) = C(u,v) +C(u—s,v), definedon 0 <u<s,~t<v<t (2)

respectively. Any expression involving P (u,v) or P¢(u,v) (or any other autocorrelation function
referred to later in this paper) will implicitly refer only to values of (u,v) for which the function

is defined. Given a binary array A = (a;;), we call the values
Ti = Zaij: Y; = Zaij
j i
the row sums and column sums of A respectively. From Lemma 2 of [6] we have:

Lemma 1 Let A be an s x t binary array and let (x;) and (y;) be respectively the row sums and

column sums of A. Then
t—1
ZPR(U,U) = Z TiTity for all u,
v=0 %
s—1
Z PC(u,v) = Z YjYj+v for all v.
u=0 b

We now define the Barker structure property.

Definition 1 Let A be an s X t binary array. A is said to have Barker structure if, for all

(u,v) # (0,0),
(1) for s,t even,

PRu,v) = 0,

PYu,v) = 0.



(#3) for s even and t odd,

0 for u even
PR(u,v) =
k(u)  for u odd,

where k(u) =1 or =1 for all —s <u < s, and k(u) + k(u—s) =0 for all 0 <u < s,

(4i1) for s,t odd,

(
k  for u even
PR('U,,U) = A
0 foru odd,
\
(
k  for v even
PC(u,v) = A«
0 forwv odd,
\

where k =1 or —1 and k = st (mod 4).

Theorem 1 (Alquaddoomi and Scholtz [1]) Let A be an s x t Barker array with st > 2.

Then A has Barker structure.

Theorem 1 is implied by equations (21)—(23) of [1]. However we deliberately state the result in

weaker form. In fact we shall derive all our results for arrays possessing only Barker structure.

We note some preliminary restrictions on the values of (s,t) for an s x ¢ binary array with

Barker structure.

Theorem 2 (Alquaddoomi and Scholtz [1]) Let A be an sxt binary array with Barker struc-

ture. Then there exists a (v, k, \)-difference set in Z s x Zy with parameters as follows:

(i) for s ort even, st = 4N? for some integer N and (v,k,)\) = (4N2,2N%2 — N,N%2 — N)

(ii) for st =1 (mod 4), 2st — 1 = (2N + 1)? for some integer N and (v,k,\) = (2N?% +

9N +1,N%, N(N —1)/2)



(#i1) for st =3 (mod 4), st = AN — 1 for some integer N and (v,k,\) = (4N —1,2N —

IL,N—1).

Although Theorem 2 was obtained in [1] only for Barker arrays, the method clearly applies to
arrays with Barker structure. The parameters in Theorem 2 () and (#i%) are those of Menon and
Hadamard difference sets respectively. (For a general treatment of difference sets, see [3] or [5].)

We shall obtain further restrictions on the dimensions of an s x ¢ binary array with Barker
structure by applying Lemma 1. This leads to equations in the row and column sums which are

necessarily satisfied by such an array. In the following sections we shall examine the cases

(1) s,t even — the equations are straightforward to solve

(74) s even and t odd — the equations reduce to a familiar unsolved problem.

We investigate the case s,t odd in a further paper [8] in which we do not solve the equations, but

obtain conditions on s and ¢ which are necessary for the equations to have a solution.

3 The case s,t even

3.1 Row and column sum equations

We first examine some consequences of the equations in the row and column sums that are
necessarily satisfied by an s x ¢t binary array with Barker structure, where s,t¢ are even. Call an
s X t binary array positive if >, > ;@i > 0. Without loss of generality, we may take a binary
array (a;;) with Barker structure to be positive, since (—a;;) also has Barker structure.

From Lemma 1 and Definition 1 (), the row sums (x;) satisfy

0 forallu#0

st foru=0.

Using these equations and the corresponding equations in the column sums, Jedwab [6] used

Lemma 2 to prove Theorem 3.



Lemma 2 Let (x;) be the row sums of an s X t binary array such that (3) is satisfied. Then s <t

and, for some 0 < I <s,

0 foralli #1
Xr; =

+v/st  fori=1.
Theorem 3 Let A be an s X t binary array with Barker structure where s,t are even. Let (x;)

and (y;) be the row and column sums of A. Then s =t and for some 0 <I<s,0<J <t
(

0 forali#1

kt  fori=1,

0 forallj#J
yi = 3
kt  forj=J,

\

where k = 1 if A is positive and k = —1 otherwise.

We now obtain further conditions on ¢ and (a;;) with the help of the following lemma, whose
proof is straightforward. This describes the transformation of the aperiodic and semi-periodic

autocorrelation functions under change of sign of alternate rows or columns of a binary array.

Lemma 3 Let A = (aij), B = (bij), C = (cij) be s x t binary arrays related by b;; = (—1)7a;;,

cij = (=1)ta;; for all (i,j). Then for all (u,v),
(4)

Cp(u,v) = (-1)"Ca(u,v),

R (=1)?P{(u,v) for t even
PB (u,v) =
(=1)%(Ca(u,v) — Ca(u,v—1t)) fort odd,
Pf(u,0) = (=1)"P{(u,v).

Co(u,v) = (=1)*Ca(u,v),



Pg(u,v) (_1)qu(uav)7

(=1)“Pg (u,v) for s even
PC'C(ua U) =

(-1)“(Ca(u,v) — Ca(u—s,v)) for s odd.
We can now establish further conditions on ¢ and (a;).

Definition 2 Let A = (ai;) be an s x t binary array. Let (I,I',J,J') be a parameter set such

that A has the following properties:
(1)) 0<I<s,0<I'<s,0<J<t,0<J <t
(@) I+I'=J+J (mod 2)
(it3) arj =1 for all 0 <j <t
(i) apj = (=1 forall0<j<t
(W) aig=1forall0<i<s
(vi) ajy = (=1)* for all 0 <i < s
(vid) 325 ai2; =2  ai2j41 =0 for all i # 1, 1'
(viii) Y, a45 = ; G2i41,5 =0 for all j # J, J'.
A is called balanced with parameters (I,1',J,J').

Theorem 4 Let A be a positive s X t binary array with Barker structure where s,t are even.

Then s =t and A is balanced for some parameters (I,I',J,J'). Ift > 2 then t =0 (mod 4).

Proof From Theorem 3 we have s =t and for some 0 < I < 5,0 < J < ¢,

0forall i #1, 4)

E aij
J

Zaij = Oforall j#J (5)



Since A is a positive array, Theorem 3 also gives

arj = lforall0<j<t,

a;g = l1lforall0<i<s. (6)

These are balance properties (ii7) and (v).
Now define B = (b;;) by b;; = (—1)?a;;. From Lemma 3 (i) and Definition 1 (i), B is also
an s X t binary array with Barker structure where s,t are even. Hence, by Theorem 3, for some

0<I'<s,0< X <t,

> by = Oforalli#TI (7)
j
D by = Oforallj#X,
br; = kforall0<j<t, (8)
bix = kforall0<i<s, 9)

where k = £1. We next determine X and k. Rewrite (8) and (9) in terms of (a;;),

ar; = (-1Pkforall 0<j<t, (10

aix (-1)Xkforall 0 <i < s. (11)

By comparing (11) with (5) and (6), we deduce that X = J and (—1)%k = 1, so that k = (—1)”.
Substitution in (10) gives

arj = (—1)7* forall 0 < j < ¢, (12)
which is balance property (iv).

Similarly, applying Lemma 3 (ii) to C = (c;;), where ¢;; = (—1)a;;, establishes that for some

0<J <t,

aiy = (=1)" for all 0 < i < s, (13)
which is balance property (vi). The ranges for I,I', J, J' given by Theorem 3 are those of balance

property (¢). Substitution of j = J' in (12) and i = I' in (13) gives two alternative expressions

7



for ap y,

arg = (<1 = (-1,

so that for consistency
I'+I=J+J (mod2),
which is balance property (i4).

Finally, suppose ¢t > 2 so that there exists some 0 < i < t for which i # I, I'. For any such i,

from (4) and (7),

> ai; = 0,
J
Z(—l)jaij = 0.

J
Therefore

D ain; =Y aisjp =0foralli #1,1, (14)
J J
which is balance property (vii). But }; a;; is the sum of exactly ¢/2 non-zero terms, each of
which is 1 or —1, so (14) implies that /2 =0 (mod 2), or equivalently

t=0 (mod 4).

Balance property (viii) is proved in a similar manner to property (vii). O

3.2 Perfect, quasiperfect and doubly quasiperfect binary arrays

We next show that the existence of an s x ¢ binary array with Barker structure, where s,t are
even, implies the existence of infinite families of binary arrays with restrictive autocorrelation
properties.

We define the periodic, periodic rowwise quasi-, periodic columnwise quasi- and periodic doubly

quasi- autocorrelation function of an s x ¢ binary array on 0 < u < s, 0 < v < t, respectively

R(u,v) = C(u,v)+C(u,v—t)+ C(u—s,v)+C(u—s,v—t),

8



QB(u,v) = C(u,v) +Clu,v—1t) — C(u—s,v) — C(u—s,v—t),
Q%w,v) = C(u,v) —Cu,v—t)+ C(u—s,v) —Clu—s,v—t),

D(u,v) = C(u,v) —C(u,v—1t)—C(u—s,v)+C(u—sv—1t).

An s x t binary array for which the autocorrelation function is 0 for all (u,v) # (0,0) is called
respectively perfect, rowwise quasiperfect, columnwise quasiperfect and doubly quasiperfect, writ-
ten respectively PBA(s, ), RQPBA(s,t), CQPBA(s,t) and DQPBA(s, t). For further details, see

Jedwab et al. [9] (Wild [17] showed the above definitions to be equivalent to those in [9]).
Lemma 4 Let A be an s X t binary array. Then

PR(u,v) = 0 for all (u,v) # (0,0)

(respectively P€(u,v) = 0 for all (u,v) # (0,0))
if and only if
(¢) A is a PBA(s,t) and
(73) A is a RQPBA(s,t) (respectively CQPBA(s,t)).

Proof Using (1) we may write, for all (u,v),

(
PE(u,v) + PE(u—s,v) for u #0
R(’LL,U) = A
PE(u,v) for u =0,
\
(
n PRy, v) — PR(u—s,v) foru#0
Q (u,v) = A
PE(u,v) for u = 0.
\

Then for (u,v) # (0,0),
PRu,v)=0forall —s<u<s0<v<t

if and only if
R(u,v) = Q¥(u,v) =0forall 0 < u < 5,0<v <t

9



The second equivalence follows similarly from (2). O
We note that arrays for which P (u,v) = 0 for all (u,v) # (0,0) (i.e. which are simultaneously
perfect and columnwise quasiperfect) were previously studied under the name aperiodic perfect

arrays by Liike et al. [11] and, allowing array elements 0 as well as £1, by Antweiler et al. [2].

Theorem 5 Let A be an s x t binary array where s,t are even. Then A has Barker structure if

and only if s =t and A is simultaneously a PBA(s,t), a RQPBA(s,t) and a CQPBA(s,t).

Proof Immediate from Theorem 3, Lemma 4 and Definition 1 (¢). O

The simultaneous autocorrelation properties of A given in Theorem 5 allow the construc-
tion of infinite families of perfect, quasiperfect and doubly quasiperfect binary arrays. We note
from Corollary 4 of [9] that the existence of a DQPBA(s,t) is equivalent to the existence of a

RQPBA(s, t) if t/ ged(s, t) is odd, and to the existence of a CQPBA(s, t) if s/ ged(s,t) is odd.

Theorem 6 Let A be an s x t binary array with Barker structure where s,t are even. Then there
exists each of the following types of array, for each y > 0:
PBA(2vt, 2¥t), PBA(2vY12t,2Yt), DQPBA(2v¢, 2¥t), RQPBA (2¥t,2v1%t),
DQPBA(2¢+'¢,2v¢), RQPBA(2v*'t,2v+%t), RQPBA(2v*'t,2vHt).
Proof From Theorem 5, A is simultaneously a PBA(%,t), a RQPBA(t,t) and a CQPBA(¢, ). The
existence of the first four families follows from Corollary 5 of [9]. The existence of the remaining

families follows from Theorem 7 of [9], provided there exists a RQPBA(2t,t). To complete the

A
proof, we now show that if A is simultaneously a PBA(s,t) and a RQPBA(s,t) then B =

A
is a RQPBA(2s,1).

From Lemma 4,
PE(u,v) = 0 for all (u,v) # (0,0).

Forall 0 <u<2s,0<v<t,

2s—1

Pg(ua U) = Z Z bijbi+u,(j+v)modt

=0 j

10



s—1 s—1
Z Z bijbitu,(j+v)modt + Z Z bits,jbitstu,(j+v)modt- (15)

i=0 j i=0 j

If u > s then the second term of (15) is 0 and so

s—1
E E aija'i+ufs,(j+v)m0dt

i=0 j

P (u,v)

= Pf(u_sav)a

whereas if u < s then from (15)

s—u—1

Pg(u U) = 2 Z Zazjaz+u,(]+v)modt+ z Zawaz—i—u s,(j+v)modt
i=s—u j
2P (u,v) + PE(u—s,v) ifu#0
2P% (u,v) if u=0.
Therefore for (u,v) # (0,0) or ( PE(u,v) = 0 and hence QE(u,v) = 0. Also P§(s,0) = st

and so QE(s,0) = PE(s,0) — PE(0,0) = 0.

Hence B is rowwise quasiperfect. O

1 1
Since the 2 x 2 array has Barker structure, we deduce that for ¢ = 2 there exists

1 -1

each of the types of array listed in Theorem 6 for each y > 0, as previously constructed in [9] and

[10].

3.3 Nonexistence results for small ¢

We now pursue the combinatorial constraints given by the balance properties for an s x ¢ binary
array with Barker structure, where s, t are even. We show how these constraints can be combined
with the simultaneous autocorrelation properties to establish the nonexistence of such arrays for
t = 4 and t = 8 and, subject to additional constraints on the structure of A4, for t = 12 and ¢t = 16.

Suppose A = (a;;) is a positive s x ¢ binary array with Barker structure where s,t are even
and t > 2. Then by Theorem 4, s = t = 4r for some r and A is balanced for some parameters
(I,I',J,J"). From Theorem 5, A is simultaneously a PBA(t,t), a RQPBA(¢,t) and a CQPBA(¢, t).

11



Define B = (b;;) by bij = @; (j+J)mods for all (i,j). Then it is straightforward to show from
Definition 2 that B is balanced with parameters (I,1',0,J"), where J' = (J' — J) mod ¢, and
simple arguments show that B is simultaneously a PBA(t, ) and a RQPBA(¢,t). Without loss of
generality we may take 0 < J" < t/2 since J # J' and, by Lemma 3 (i), we may if necessary first
transform A via aj; = (—=1)"*'ay; for all (4, j) (so that the values of J, J' are interchanged) whilst
preserving the Barker structure. Next define C' = (c;;) by ¢i; = b(i-1)moat,; for all (4,5). Then C
is balanced with parameters (0,1",0,J"), where I" = (I' — I) mod ¢, and C is a PBA(t,t). We
may similarly take 0 < I" < ¢/2. From balance property (ii), I = J" (mod 2).

We therefore use the following algorithm to search for a positive s x ¢ binary array (a;;) with

Barker structure, s =t = 4r.
Algorithm 1
(A) For each pair (I'",J") satisfying 0 < I" < ¢/2,0 < J" < t/2, I" = J" (mod 2),
generate all possible t x t binary arrays (c;j) that are balanced with parameters (0,1",0,J").

(B) Retain only those arrays (c;;) that are perfect.

(C) For each 0 < I <t and each array (c;;) remaining from Step (B), let bij = c(;_1)moat,;

for all (i,7) and retain only those arrays (b;;) that are rowwise quasiperfect.

(D) For each 0 < J <t and each array (bi;) remaining from Step (C), let a;; = b; (j_jymodt

for all (i,5) and retain only those arrays (a;;) that are columnwise quasiperfect.

For each pair (I",J"), Step (A) is implemented as the following branching algorithm, which

fixes successive elements of the array so that at each stage no balance property is violated.
Algorithm 2

(A) Set

I forall0<j<t,

~—

aoj = 1,a1uj = (—1

ajo = L,a;57 = (=1)*  for all 0 <i<t.

12



(B) If there exists an (i,j) for which a;; is not yet set then branch, setting a;; = 1 for one

branch and a;; = —1 for the other branch. Otherwise output (a;;) and terminate this branch.

(C) If either of the balance properties (vii) and (viii) determines consistently the value of
one or more unset array elements, set these elements accordingly and go to Step (C). If
however balance properties (vii) and (viii) lead to an inconsistent assignment of unset array
elements, discard (a;;) and terminate this branch. If no unset array elements are determined

go to Step (B).

For the case t = 4 Algorithm 1 was implemented by hand, whereas for the case t = 8 computer
search was used. In both cases all arrays remaining after Step (B) had I" = J"” = t/2, and no
array remained after Step (C). Therefore for ¢ = 4, 8 there is no perfect and rowwise quasiperfect

balanced ¢ x ¢t binary array. This implies:
Proposition 1 There is no 4 x 4 or 8 x 8 binary array with Barker structure.

(Although for ¢ = 4,8 there does not exist a perfect and rowwise quasiperfect balanced ¢ x ¢
binary array, we note that for ¢ = 2" and for each r» > 1 there exists a perfect ¢ x ¢ binary array
that is balanced with parameters (0,¢/2,0,t/2). Such a family of arrays can be obtained using
the recursive construction of Theorem 8 of [9].)

The cases t = 12,16 contain too many possibilities to allow exhaustive search using Algo-
rithm 1, but we can prove nonexistence subject to additional constraints on the elements (a;;).

Given s x t binary arrays A = (a;;), B = (b;;), define the columnwise interleaving of A with

B to be the 2s x ¢t binary array C = (¢;;) = ic(A4, B) given by
Ci72j = az-j, Ci72j+1 = bz'j for all (l,J)

We observe that in the cases t = 4,8 each array remaining after Step (B) of Algorithm 1 is of

, for some component arrays X,Y. If we assume

SR

st
interleaved form, namely ic [

13



A to have interleaved form, we can derive necessary conditions on the component arrays X,Y

from the balance and autocorrelation properties of A.

Definition 3 Let A = (a;;) be an s x t binary array. Let (I,J,J') be a parameter set such that

A has the following properties:
(1)) 0<I<s,0<J<t, 0T <t
(it) arj =1 forall0<j <t
(#91) ag =1 for all0<i<s
(iv) ajyr = (1) for all 0 <i < s
(v) Xjaij =0 foralli #1
(vi) Y, a2i5 =D ; Qip1,; =0 for all j # J,J'.
A is called partially balanced with parameters (I,J,J").

Note that an s x ¢ binary array that is balanced for some parameters (I,1I',J,J') is partially

balanced with parameters (I, J, J').

Theorem 7 Let A be a positive s X t binary array with Barker structure where s,t are even and
t > 4. Let A be of interleaved form with component arrays X and Y = (y;;). Then s =t = 8r
for some r, X is partially balanced for some parameters (L, K,K'), and X is simultaneously a

PBA(4r,4r) and a CQPBA(4r,4r). Also
yr; = k forall0<j <d4r,
where k=1 or —1,
>y = 0foralli#L,
J

and Y is simultaneously a RQPBA(4r,4r) and a DQPBA (4r,4r).

14



Proof (Outline) By Theorem 4, s =t = 4r' for some r' and A is balanced for some parameters
(I,I',J,J"). The partial balance properties of X and the constraints on Y are derived directly
from the balance properties of A. The constraint 7' = (mod 2) follows from partial balance
property (vi) of X, using an argument similar to that at the end of the proof of Theorem 4. By
Theorem 5, A is simultaneously a PBA(t,t) and a CQPBA(¢,t). The autocorrelation properties
of X and Y are then given by the following partial converse to Theorems 2 and 4 of [9], which is
straightforward to verify. Assuming A has interleaved form with component arrays X and Y, if
A is perfect then X is perfect and Y is rowwise quasiperfect, and if A is columnwise quasiperfect
then X is columnwise quasiperfect and Y is doubly quasiperfect. O

Assume that A has interleaved form. By Proposition 1 and Theorem 7, the smallest case is
t = 16, for which the component array X has size 8 x 8. We see from Theorem 7 that the partial
balance and autocorrelation properties required of X are weaker than those previously required of
A. Nevertheless, a search procedure similar to that of Algorithms 1 and 2 shows that there is no
perfect and columnwise quasiperfect 8 x 8 partially balanced binary array. (In fact the set of 8 x 8
perfect binary arrays that are partially balanced with parameters (0,0, K"), for each 0 < K" < 4,

is no larger than that remaining after Step (B) of Algorithm 1, despite the relaxation in balance

conditions.) We therefore have the following result.

Proposition 2 There is no 16 x 16 binary array of interleaved form with Barker structure.

Finally, we drop the assumption that A has interleaved form. Consideration of the balance
and autocorrelation properties that are required with respect to both the rows and the columns
of A suggests that restriction of the search to symmetric arrays might be helpful. Indeed, in the
cases t = 4, 8 the set of arrays remaining after Step (B) of Algorithm 1 contains a large subset of
symmetric arrays. It is straightforward to modify Algorithms 1 and 2 to search for a symmetric
positive 4r x 4r binary array with Barker structure. Computer search for the case t = 12 shows

there is no symmetric perfect balanced 12 x 12 binary array. This implies the following result.

15



Proposition 3 There is no symmetric 12 x 12 binary array with Barker structure.

We conclude this section by summarising the main results for the case s,t even.

Theorem 8 Let A be an s Xt binary array with Barker structure where s,t are even. Then s = t,
A is simultaneously a PBA(t,t), a RQPBA(t,t) and a CQPBA(t,t), and there exists each of the
following types of array, for each y > 0:
PBA(2v¢, 2%t), PBA(2Y12t,2Yt), DQPBA(2vt, 2%t), RQPBA (2¥t,2v1+%t),
DQPBA(2v*1¢,2vt), RQPBA(2Y*t1t,2v*t2t), RQPBA(2v*lt,2vtie).
Ift > 2 thent =0 (mod 4) and t > 12. If A is a positive array then A is balanced for some
parameters (I,I',J, J"). If A is symmetric then t > 16. If A is of interleaved form then t = 0

(mod 8) and t > 24.

The nonexistence of a PBA(¢,¢) with t =0 (mod 4) in the range ¢t < 100 has been shown by
McFarland for ¢t = 28, 44, 76, 92 [12] and for ¢t = 84 [13]. Therefore there does not exist a ¢t x ¢

binary array with Barker structure for these values of ¢.

4 The case s even, t odd

In this section we use methods similar to those of Section 3 to deduce restrictions on an s x ¢
binary array with Barker structure, where s is even and ¢ is odd.

From Lemma 1 and Definition 1 (i¢), the row sums (x;) and column sums (y;) satisfy

0 for all u even and u # 0
D @it = 4 k(w)t for all uodd (16)
st for u =0,

where k(u) =1 or —1 for all —s < u < s, and k(u) + k(u —s) =0 for all 0 < u < s,
0 forallv#0
> yiyie = (17)
J

st for v =0.
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The solution of equations (17) is given by Lemma 2. We now show that if equations (16) have a
solution then there exists a Barker sequence of length s. We refer the reader to [7] for a summary
of results on Barker sequences. We note in particular that the only known even lengths for a
Barker sequence are 2 and 4, and that any length s > 13 must satisfy s = 452 for some odd S,
where S is not a prime power and S > 689 [4], [7], [15], [16]. We also note that Ryser’s conjecture
[14] on cyclic difference sets, if true, would imply that there is no even length Barker sequence of

length s > 4.
Lemma 5 Let s > 2 and (z; : 0 < i < s) be integers and let p be a prime. Let

ja Zwinu for all 0 < u < s. (18)

K3

Then pf z; for at most one 0 < i < s.
Proof We use induction on s. The case s = 2 is equivalent to
plzoz1 = p|zo or p|a,

which is true because p is prime. Assume now that the result is true for the case s — 1. Taking

u=s—1in (18), we have p|zgz,_1. Since p is prime, without loss of generality
plxs—l- (19)

Then from (18),
s—u—2
D] Z TiTiqy forall 0 <u < s — 1.
i=0

By the inductive hypothesis, pf z; for at most one 0 < i < s — 1. Together with (19), this

establishes the result for the case s and the induction is complete. O

Theorem 9 Let (x;) be the row sums of an s X t binary array where s is even and t is odd.
Suppose (x;) satisfy (16), where k(u) = 1 or —1 for all —s < u < s. Then t = T? for some odd
T and there exists a Barker sequence (z;) of length s satisfying x; = T'z; for all i.

17



Proof Let p be a prime dividing ¢. From (16) we see that

D] Z TiTiyy for all 0 <wu < s. (20)

k3

Therefore by Lemma 5, pf z; for at most one 0 < ¢ < s. Taking v = 0 in (20) then shows that

p|x; for all 0 < i < s. Write x; = pz! for all i and ¢t = p?#', so that (16) becomes

0 for all u even and u # 0
Z TiTiyy = k(u)t'  for all u odd
i
st for u = 0.

The equations for (z}) have the same form as (16) so we may apply the above argument

repeatedly to each prime factor of ¢. This leads to

t = T? for some odd T, z; = T; for all 4, (21)
where (z;) satisfies
0 for all u even and u # 0
Z ZiZitu = k(u) for all w odd (22)
i
s for u =0,

and where k(u) = 1 or —1 for all —s < u < s. Taking v = 0 in (22),

Zz? =s. (23)

Write the array as (a;;). Now ¢ is odd and so from (21),

t—1
zi=a;/T =) a;/T #0forall 0 <i<s.
7j=0

Therefore (23) implies that z; = 1 or —1 for all 0 < 7 < s. Hence (2;) is a binary sequence of

length s satisfying (22), which are the defining equations for a Barker sequence of even length. O

Corollary 1 Let A be an s X t binary array with Barker structure where s is even and t is odd.
Let (z;) and (y;) be the row and column sums of A. Then s =45 and t = T? for some odd S,T
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where S is not a prime power, 2S5 > T, and if S > 1 then S > 689. Furthermore there exists a

Barker sequence (z;) of length s satisfying

z; = Tz; for all i.

For some 0 < J < t,

0 forallj #£J
yi =
2kST  for j = J,
where k = 1 if A is positive and k = —1 otherwise.

Proof (z;) and (y;) satisfy equations (16) and (17) respectively. Applying Lemma 2 to equations

(17), s > t and for some 0 < J < ¢,

0 for all j #J
Yi = (24)
++/st forj=J.

Since s is even and t is odd, s > t becomes
s>t (25)

Applying Theorem 9 to equations (16),

t="T" (26)
for some odd T', and there exists a Barker sequence (z;) of length s satisfying
x; = Tz; for all 4.

Using the quoted results on Barker sequences, either s = 2 (but then ¢ = 1 from (25) and,

trivially, no array A with the required properties exists) or else
5 =48> (27)

for some odd S where S is not a prime power, and if S > 1 then S > 689. Substitution of (26)
and (27) in (24) and (25) gives the result. O
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Taking the value S =1 in Corollary 1 gives the parameter values for a Barker sequence of length
4. The existence of an array of the desired type with S > 1 implies the existence of an unknown
Barker sequence.

Using a similar method to the proof of Theorem 3, we can obtain the following additional

restrictions on (aj;).

Lemma 6 Let A = (a;;) be an s x t binary array with Barker structure where s = 45? is even

and t =T? is odd. Then for some 0 < J < t,
Zazz',j = Za2z’+1,j = 0 forall j #J,
i i

{Za%,hza%—i-l,J} = {0,2kST},

Zaij = Tz for all i, (28)
J

where k = 1 if A is positive and k = —1 otherwise, and (z;) is a Barker sequence of length s.
Let B = (b;j) be the s x t binary array related to A by b;; = (=1)7a;; for all (i,5). If B has

Barker structure then constraints (28) strengthen to

Zai,zj; Zai,2j+1 = {0,Tz} for all i. (29)
J J

(The reason that (29) depends on B having Barker structure is that the value of PE(u,v) does
not change in a simple way under the transformation b;; = (—1)?a;; when t is odd. If A4 is an
s x t Barker array with st > 2 then the condition on B certainly holds.)

We finally show that the existence of an s x ¢ binary array with Barker structure, where s is

even and t is odd, implies the existence of certain perfect and quasiperfect binary arrays.

Theorem 10 Let A be an s x t binary array with Barker structure where s is even and t is
odd. Then A is simultaneously a PBA(s,t) and a CQPBA(s,t), and there exist a PBA(2s,2t), a

PBA(s,4t) and o CQPBA(s, 2t).
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Proof By Lemma 4 and Definition 1 (44), A is simultaneously a PBA(s,t) and a CQPBA(s, t).
Then from Theorem 2 of [9], there exist a PBA(2s,2t) and a PBA(s,4t). Following the proof of
Theorem 6, [ A A ] is a CQPBA(s,2t). O

We note from Corollary 1 that s = 452 for some odd S, so we cannot deduce the existence of a
doubly quasiperfect binary array from the existence of a CQPBA(s,t) or a CQPBA(s, 2t) using
Corollary 4 of [9].

We conclude this section by summarising the main results for the case s even and ¢ odd.

Theorem 11 Let A be an s X t binary array with Barker structure where s is even and t is odd.
Then s = 45% and t = T? for some odd S,T where S is not a prime power, 28 > T, and if S > 1
then S > 689. A is simultaneously a PBA(s,t) and a CQPBA(s,t), and there exist a PBA(2s,2t),

a PBA(s,4t) and a CQPBA(s,2t). There exists a Barker sequence of length s.

We remark that in the case s even and t odd, Alquaddoomi and Scholtz’s conjecture on
the nonexistence of Barker arrays with s, > 1 and (s,t) # (2,2) would be implied by Ryser’s

conjecture applied to Barker sequences, if the latter were true.

5 Comments

If Ais an s x t Barker array with st > 2 then A has Barker structure. The results of Theorems 8
and 11 seem to provide good reason to doubt the existence of an s x ¢t binary array with Barker
structure where st > 4 is even. In the case s,t even, the simultaneous autocorrelation properties
required appear highly restrictive. In the case s even, ¢t odd, the existence of such an array would
disprove Ryser’s long-standing conjecture on cyclic difference sets.

The smallest even value of st > 4 for which ¢ > 1 and the nonexistence of an s x ¢ binary array
with Barker structure has not been determined occurs for s,t even at (s,t) = (12,12) and for s

even, t odd at (s,t) = (4.6892,9).
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We consider the case s,t odd in a further paper [8].
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